When Marin Soljacic first presented the principle, it was unproved. All he could show were his calculations. “I expected that some people would think I was a crackpot,” says Soljacic, a physicist at the Massachusetts Institute of Technology (MIT). “This was pretty far out.”
A year and a half later, a bulb lit up in an MIT lab—unplugged. Soljacic and his collaborators had demonstrated a new way of coaxing magnetic fields into transferring power over a distance of several meters without dispersing as electromagnetic waves. The demonstration ushered in a technology that might eventually become as pervasive as the gadgets it could power. Laptops, cell phones, iPods, and digital cameras might someday recharge without power cords. With the proliferation of wireless electronics, perhaps it was just a matter of time before power transmission would go wireless, too.
Technologies such as lasers and parabolic antennas can confine the energy of electromagnetic waves in tight beams, that can transfer power. But beams have disadvantages. One problem is that anything that happens to cross a beam’s path may get fried. Soljacic’s wireless power system harnesses oscillating electric and magnetic fields in a novel way. Although it doesn’t radiate energy as a radio antenna does, it transmits power across greater distances than a conventional transformer can.
AEVIA Reveals the Source
Additional Source